Physical characteristics of the gonadotropin receptor-hormone complexes formed in vivo and in vitro.
نویسندگان
چکیده
The physical properties of detergent-solubilized gonadotropin receptor-hormone complexes, determined by density gradient centrifugation and gel filtration, were compared after in vivo and in vitro labeling of specific ovarian binding sites with radioiodinated human chorionic gonadotropin (hCG). Following intravenous administration of biologically active 125I-labeled hCG, up to 50% of the gonadotropin tracer was bound to the luteinized ovaries of immature female rats treated with pregnant mare serum/human chorionic gonadotropin. Comparable binding of 125I-labeled hCG was observed after equilibration of ovarian particles with the labeled hormone in vitro. The sedimentation properties of the solubilized receptor-hormone complexes formed in vivo were identical with those derived for the corresponding complexes formed in vitro and extracted with Triton X-100 and Lubrol PX, with sedimentation constants of 8.8 S for the Triton-solubilized complex and 7.0 S for the complex extracted with Lubrol PX. During analytical gel filtration of the Triton-solubilized receptor-hormone complex on Sepharose 6B in 0.1% Triton X-100, the partition coefficient (Kav) of the "in vivo" complex (0.32) was not significantly different from that of the complex formed in vitro (0.29). Gel filtration of the Lubrol-solubilized ovarian particles on Sepharose 6B in 0.5% Lubrol PX gave Kav values for the "in vivo" and "in vitro" labeled complexes of 0.36 and 0.32, respectively. These findings demonstrate that the physical properties of size and shape which determine the partition coefficient and sedimentation characteristics of detergent-solubilized gonadotropin receptor-hormone complexes formed in vitro are not distinguishable from those of the complexes extracted after specific interaction of the ovarian gonadotropin receptors with radioiodinated hCG in vivo.
منابع مشابه
Structures, Functions and Expressions of GnRH and GnRH Receptor in Peripheral Reproductive Organs and Their Regulation by Estradiol-17β
Studies have shown that estradiol-17β (E2) regulates gonadotropin-releasing hormone (GnRH) and GnRH receptor expression in hypothalamus and pituitary. Several studies have shown that GnRH and its receptor are also expressed in peripheral reproductive organs and little is known about their regulations. In this study, GnRH and GnRH receptor structures, functions, their peripheral expressions and ...
متن کاملResurgence of Minimal Stimulation In Vitro Fertilization with A Protocol Consisting of Gonadotropin Releasing Hormone-Agonist Trigger and Vitrified-Thawed Embryo Transfer
Minimal stimulation in vitro fertilization (mini-IVF) consists of a gentle controlled ovarian stimulation that aims to produce a maximum of five to six oocytes. There is a misbelief that mini-IVF severely compromises pregnancy and live birth rates. An appraisal of the literature pertaining to studies on mini-IVF protocols was performed. The advantages of minimal stimulation protocols are report...
متن کاملThe Effects of Progesterone on Oocyte Maturation and Embryo Development
Oocyte maturation and embryo development are controlled by intra-ovarian factors such as steroid hormones. Progesterone (P4) exists in the follicular fluid that contributes to normal mammalian ovarian function and has several critical functions during embryo development and implantation, including endometrial receptivity, embryonic survival during gestation and transformation of the endometrial...
متن کاملP-110: Effect of Increasing Amount of Oocyte Secreted Factors on Cumulus Expansion of Bovine Cumulus-Oocyte Complexes
Background: In vitro maturation is a good method to decrease cancer risk of superovulation by gonadotropin hormones. A paracrine effect of oocyte secretions on oocyte developmental competence is under investigation. Apart from oocyte maturation, ovulation in vivo requires a precise control of extracellular matrix modification. Cumulus cells secrete hyaluronan to form a muco-elastic extracellula...
متن کاملP-24: Opioid and Progesterone Signaling Is Obligatoryfor Early Human Embryogenesis
Background: The growth factors that drive the division and differentiation of stem cells during early human embryogenesis are unknown. The secretion of endorphins, progesterone (P(4)), human chorionic gonadotropin, 17beta-estradiol, and gonadotropin-releasing hormone by trophoblasts that lie adjacent to the embryoblast in the blastocyst suggests that these pregnancy-associated factors may direc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 72 4 شماره
صفحات -
تاریخ انتشار 1975